
 Infinite dimensional symmetries of self-dual Yang-Mills

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP08(2009)072

(http://iopscience.iop.org/1126-6708/2009/08/072)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:25

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/08
http://iopscience.iop.org/1126-6708/2009/08/072/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
8
(
2
0
0
9
)
0
7
2

Published by IOP Publishing for SISSA

Received: July 23, 2009

Accepted: July 28, 2009

Published: August 19, 2009

Infinite dimensional symmetries of self-dual Yang-Mills

Paul Mansfield and Adam Wardlow

Department of Mathematical Sciences, University of Durham,

South Road, Durham, DH1 3LE, U.K.

E-mail: p.r.w.mansfield@durham.ac.uk, a.b.wardlow@durham.ac.uk

Abstract: We construct symmetries of the Chalmers-Siegel action describing self-dual

Yang-Mills theory using a canonical transformation to a free theory. The symmetries form

an infinite dimensional Lie algebra in the group algebra of isometries.

Keywords: Discrete and Finite Symmetries, Space-Time Symmetries, QCD

ArXiv ePrint: 0903.2042

c© SISSA 2009 doi:10.1088/1126-6708/2009/08/072

mailto:p.r.w.mansfield@durham.ac.uk
mailto:a.b.wardlow@durham.ac.uk
http://arxiv.org/abs/0903.2042
http://dx.doi.org/10.1088/1126-6708/2009/08/072


J
H
E
P
0
8
(
2
0
0
9
)
0
7
2

Contents

1 Introduction 1

2 Review of the Lagrangian formulation of MHV rules 2

3 Symmetries of scalar field theories 6

3.1 Lie algebra 8

4 Transformation of A and A 11

4.1 Transformation of A for the isometry that preserves Γ and Υ 12

4.2 Transformation of A for the isometry that preserves Γ and Υ 15

4.3 Most general transformation using the full Lorentz group 18

5 Conclusion and summary 24

A Order by order calculation of δA 25

B Order by order calculation of δA 29

1 Introduction

The observation that tree-level gluon scattering amplitudes localise on simple curves in

twistor space [1] led to the proposal of a new set of rules for calculating such amplitudes [2].

These provided an efficient alternative to conventional Feynman rules. Initially they were

proven using non-Lagrangian methods [3], but they may be derived by applying a non-local

canonical transformation to light-cone Yang-Mills theory [4, 5]. This action can be split into

a part, the Chalmers-Siegel action, [6], that describes self-dual gauge theory and the rest.

By itself the self-dual theory has the bizarre property of yielding an S-matrix that is trivial

at tree-level whilst having non-linear Euler-Lagrange equations, and non-trivial scattering

amplitudes at one-loop. The canonical transformation maps the Chalmers-Siegel part of

the Lagrangian to a free theory, so that the rest of the Lagrangian furnishes interaction

terms. This canonical transformation provides a new approach to the self-dual sector of

gauge theories. We will use it to construct new non-local symmetries of the self-dual

Lagrangian, thereby extending the programme of [7] off-shell, (see also [8, 9] and [10]).

As is well-known, a free-theory with Euler-Lagrange equation Ω(x)φ(x) = 0 has a

symmetry if the operator, Ω transforms covariantly when x → xG, because if Ω(xG) =

AΩ(x), then 0 = Ω(xG)φ(xG) = AΩ(x)φ(xG), so φ(xG) is a new solution. Taking the

transformation G close to the identity gives the change in the field, δ φ(x) = φ(xG)− φ(x)

which can be used to construct the usual Noether currents and conserved charges. However,
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because the Euler-Lagrange equation is linear we can also construct a new solution as φ(x)+

ǫ φ(xG), with G a finite transformation. The change in the field is then δ φ(x) = ǫ φ(xG).

This leads to higher derivative conserved currents such as the ‘zilch’ of the electromagnetic

field discovered in the 60s by Lipkin [11].

Since the canonical transformation maps the Chalmers-Siegel action to a free theory we

can in principle construct the symmetries of this action for self-dual Yang-Mills from those

of the free theory by inverting the transformation back to the original variables. This leads

to quite cumbersome expressions, so to produce a compact result we begin by examining

just the first few orders (in powers of the fields) of the transformations A → A + δA and

A → A + δA and guess a more concise general expression for δA given by

δA1 = −ǫ

∞∑

n=2

n∑

i=2

n∑

j=i

∫

2···n

1̂

q̂
Γ(qG, iG, . . . , jG)Γ(q, j + 1, . . . , n, 1 · · · , i − 1) ×

×A2̄ · · ·AīG · · ·Aj̄G · · ·An̄

and expanded diagramatically in figure 3, which also includes the expansion for δA. We

then prove that this guess is correct by showing that it leaves the Chalmers-Siegel action in-

variant.

2 Review of the Lagrangian formulation of MHV rules

In recent years, an alternative approach to the usual Feynman diagram expansion of Yang-

Mills theory has been suggested at tree level, [2], and to low order in the loop expansion.

The Feynman approach is well understood but the complexity of the calculations grows

very quickly. In many cases scattering amplitudes are much simpler than their constituent

Feynman diagrams. For example the Parke-Taylor amplitude [12] for a tree-level pro-

cess in which the greatest number of gluon helicities changes is written in terms of the

reduced amplitude

A = gn−2 〈λr, λs〉4∏n
j=1 〈λj, λj+1〉

where g is the coupling constant and r and s label the gluons with positive and negative

helicity respectively. The λj are two spinors satisfying

λj λ̃j = pt 1 + Σσipi

with σi being the Pauli matrices and pi being the momenta of the on-shell gluons. The

bracket 〈 , 〉 is 〈λj , λk〉 = λT
j iσ2λk. Then, the full tree level amplitude is a sum over

colour ordered amplitudes:

An =
∑

σ

tr
(
TRσ(1) · · ·TRσ(n)

)
i(2π)4δ4(p1 + · · · + pn)Aσ

n.

These amplitudes (suitably continued off-shell) become the interaction vertices of the CSW

approach to Yang-Mills [2] and [1]. These MHV rules were proven outside the Lagrangian

formalism, indirectly from the BCFW recursion [3] and using twistor methods. (See [13]
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through to .) An alternative, Lagrangian approach was taken in [4] and [5] which describe

a canonical transformation taking the standard Yang-Mills action into one generating the

MHV rules. See also [21] and [22]. We shall now give a brief review.

The Yang-Mills action in coordinates (t, x1, x2, x3) is

S =
1

2g2

∫
dtdx1dx2dx3tr (FµνFµν)

where the trace is taken over the generators of the gauge group TR, and

Fµν = [Dµ,Dν ] Dµ = ∂µ + Aµ

Aµ = AR
µ TR

[
TR, T S

]
= fRSP TP

tr(TRT S) = −δRS

2
.

We will use light-front co-ordinates x0 = t−x3, x0 = t+x3, z = x1 + ix2 and z = x1 − ix2.

By imposing the gauge condition A0 = 0, and integrating out the non-dynamical field A0

we arrive at the transformed action

S =
4

g2

∫
dx0

{
L−+ + L++− + L−−+ + L−−++

}
(2.1)

where the L’s are the terms in the lagrangian, which is defined on the light front surface

as an integral over constant x0 surfaces. The decorations on the L’s label the helicity

content and we observe that the term L++− is unwanted since it contains only one negative

helicity, whereas we need two negative helicities in the MHV formalism. Further, the terms

L++···++−− are missing. On the quantization surface, it is worth noting that the fields have

the same x0 dependence so we don’t have to explicitly write this and we use the notation

(x0, z, z) = x on the quantisation surface. Explicitly, the L’s are given by [5]

L+−[A] =
4

g2
tr

∫

Σ
d3xA (∂0∂0 − ∂z∂z) A

L++−[A] =
4

g2
tr

∫

Σ
d3x

(
−∂z∂

−1
0

A
) [

A, ∂0A
]

L−−+[A] =
4

g2
tr

∫

Σ
d3x

[
A, ∂0A

] (
−∂z∂

−1
0

A
)

L−−++[A] =
4

g2
tr

∫

Σ
d3x

(
−
[
[A, ∂0A]∂−2

0

[
A, ∂0A

]])
.

To remove the unwanted term L++− and generate the missing terms we define a change

of variables A, A → B, B so that

L+−[A, A] + L++−[A, A] = L+−[B, B]. (2.2)

B is a functional of A only on the quantization surface, B = B[A], and

∂0A(y) =

∫

Σ
d3x

δB(x)

δA(y)
∂0B(x) (2.3)
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where Σ refers to the quantization surface. It transpires that not only does this remove

the unwanted vertex, it also generates the missing MHV vertices. The l.h.s. of eq. (2.2) is

known as the Chalmers-Siegel action on the light cone and its Euler-Lagrange equations

give the self dual Yang-Mills equations.

By substituting (2.3) into (2.2) and noting that terms involving ∂0A and ∂0B are auto-

matically equal [5] we arrive at the defining expression relating A and B. This is given by

the following functional differential equation, (suppressing the x0 dependence for brevity),

∫

Σ
d3y

[
D,∂z∂

−1
0

A
]
(y)

δB (x)

δA (y)
= ω (x)B (x) . (2.4)

Using this expression, one can calculate B in terms of A, and its inverse A in terms of B.

In momentum space, (2.4) can be written

ω1A1 − i

∫

23
[A2, ζ3A3] (2π)3δ (p1 − p2 − p3) =

∫

p

ω(p)B(p)
δA(p1)

δB(p)
(2.5)

where we use the same notation to that in [23] in which ζ(p) = pz/p0 and ω(p) = pzpz/p0.

The group generators are absorbed into the fields, we introduce the notation As = A(ps),

As = A(−ps) and we introduce the shorthand notation

∫

1···n
=

∫
d4p1

(2π)4
· · · d4pn

(2π)4
.

Ettle and Morris define the above notation as integrals over the quantisation surfaces since

there is no need to Fourier transform the x0 dependence. Here however, we shall be ap-

plying a linear transformation involving all the spacetime coordinates, so it makes sense

to Fourier transform the x0 dependence, which does not affect the calculations in [23]. We

also introduce the notation (pn
0 , pn

0
, pn

z , pn
z ) = (ň, n̂, ñ, n̄) and the following brackets, their

meanings described in [23]

{p1, p2} = 1̂2̄ − 2̂1̄

(p1, p2) = 1̂2̃ − 2̂1̃.

The relation (2.5) has power series solutions of the form

A1 =

∞∑

n=2

∫

2···n
Υ (1 . . . n)B2 · · ·Bn (2.6)

using the shorthand notation, and dropping the momentum conserving delta functions and

factors of 2π (as we shall do throughout the majority of this paper). Similarly, its inverse

is given by the power series

B1 =

∞∑

n=2

∫

2···n
Γ (1 . . . n)A2 · · ·An (2.7)

We solve for Γ and Υ by putting these expressions into (2.5) thereby extracting a

recursion relation. When expressed in terms of their independent momenta, Υ(1, . . . , n)
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and Γ(1, . . . , n) take the following particularly simple form

Υ(1, . . . , n) = (−i)n
1̂

(2, 3)

3̂

(3, 4)
· · · n̂ − 1

(n − 1, n)
(2.8)

and also

Γ(1, . . . , n) = −(i)n
1̂

(1, 2)

1̂

(1, 2 + 3)
· · · 1̂

(1, 2 + · · · (n − 1))
. (2.9)

We should pay attention to the fact that these coefficients are independent of p0 and pz̄

when expressed in this way.

In addition, we can express A as a power series in B viz

A1̄ =

∞∑

n=2

n∑

k=2

∫

2···n

k̂

1̂
Ξk(1̄2 · · · n)B2̄ · · ·Bk̄ · · ·Bn̄ (2.10)

where the coefficients are given by

Ξk(12 · · · n) = − k̂

1̂
Υ(12 · · · n). (2.11)

Note we use a different convention for the indices attached to Ξ. In the paper [23], the left

hand side of the above reads Ξk−1.

Ettle and Morris [23] do not calculate the inverse of (2.10) but the calculation is similar

to the one they describe in some respects. We begin by writing an ansatz for the inverse

of (2.10)

B1̄ =
∞∑

n=2

n∑

k=2

∫

2···n

k̂

1̂
Θk(1̄2 · · ·n)A2̄ · · ·Ak̄ · · ·An̄. (2.12)

Later, we will calculate δA and write a transformation of the field A → A + δA to the first

three orders in powers of the fields A and A. As discussed already, we will then guess a

more general result to all orders and prove that it leaves the Chalmers-Siegel action invari-

ant so it is only necessary to calculate the coefficients of first five terms in (2.12) to use in

the explicit calculations of the first three orders in A and A in the expresion for δA. We

differentiate (2.7) with respect to x0, which in momentum space gives

1̌B1̄ =

∞∑

n=2

n∑

k=2

∫

2···n
ǩΓ(1̄2 · · · n)A2̄ · · ·Ak̄ · · ·An̄ (2.13)

and then use

tr

∫

1
1̌A1

ˆ̄1A1̄ = tr

∫

1
1̌B1

ˆ̄1B1̄ (2.14)

to extract a recurrence relation for Θk(12 · · · n) to the first few order in Θ. By substitut-

ing eq. (2.13) and eq. (2.12) into the invariant quantity (2.14) and considering momentum

conservation we can easily extract the first five expressions for Θ,

Θ2(123) = −Γ(231),

Θ3(123) = −Γ(312),
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Θ2(1234) = −Γ(2 + 3, 4, 1)Θ2(1 + 4, 2, 3) − Γ(2341),

Θ3(1234) = −Γ(3 + 4, 1, 2)Θ2(1 + 2, 3, 4) − Γ(2 + 3, 4, 1)Θ3(1 + 4, 2, 3) − Γ(3412),

Θ4(1234) = −Γ(3 + 4, 1, 2)Θ3(1 + 2, 3, 4) − Γ(4123). (2.15)

When written in terms of their independent momenta they reduce to the simple expressions

Θ2(123) = −Γ(231), Θ3(123) = −Γ(312),

Θ2(1234) = − 2̂

1̂
Γ(1234), Θ3(1234) = − 3̂

1̂
Γ(1234),

Θ4(1234) = − 4̂

1̂
Γ(1234). (2.16)

3 Symmetries of scalar field theories

We shall briefly illustrate the extended symmetries of free theories with the example of

complex scalar fields ϕ and ϕ̃ with action

S =

∫
ddx

√−g
(
gµν∂µϕ̃∂νϕ + m2ϕ̃ϕ

)

=

∫
ddx

√−g
(
gµν ϕ̃∂µ∂νϕ + m2ϕ̃ϕ

)

=

∫
ddx

√−gϕ̃Ωϕ

(3.1)

where Ω is an operator given by Ω = ηµν∂µ∂ν+m2. Consider the transformation ϕ → ϕ+δϕ

and ϕ̃ → ϕ̃ + δϕ̃ with δϕ and δϕ̃ given by

δϕ(x) = ǫϕ(xG) , δϕ̃(x) = −ǫϕ̃(xG−1) (3.2)

resulting from the finite isometry x → xG. Now the change in the action is

δS = ǫ

∫
ddx
√

−g(x)ϕ̃(x)Ω(x)ϕ(xG) − ǫ

∫
ddx
√

−g(x)ϕ̃(xG−1)Ω(x)ϕ(x). (3.3)

We are free to apply the isometry x → xG to the second integral. By writing y = xG−1

and realising that the following is true

√
−g(x)ddx =

√
−g̀(y)ddy

then (3.3) becomes

δS = ǫ

∫
ddx
√
−g(x)ϕ̃(x)Ω(x)ϕ(xG) − ǫ

∫
ddy
√

−g̀(y)ϕ̃(y)Ω(yG)ϕ(yG).

Since Ω is an index-less scalar operator we have Ω(yG) = Ὼ(y) and we get

δS = ǫ

∫
ddx
√
−g(x)ϕ̃(x)Ω(x)ϕ(xG) − ǫ

∫
ddy
√

−g̀(y)ϕ̃(y)Ὼ(y)ϕ(yG),

– 6 –
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and since x → xG is an isometry we have g̀ = g and Ὼ = Ω hence we arrive at the conclusion

that δS = 0.

In flat 3+1 spacetime, the isometries are elements of the Poincaré group, that is the 6

elements of the Lorentz group and the 4 displacements. For the former

xµ → (xµ)G = Λµ
νx

ν .

In the infinitesimal case where Λµ
ν is close to the identity matrix one can write the field

transformations as

ϕ (xµ) → ϕ (δµ
νx

ν + ǫaµ
νx

ν)

ϕ̃ (xµ) → ϕ̃ (δµ
νx

ν − ǫaµ
νx

ν)

where aµ
ν are the components of an anti-symmetric matrix. We may consider building a

finite isometry out of repeated infinitesimal isometries generated by infinitesimal Killing

vectors of the spacetime X(σx(t)) where σx(t) are flows generated by the isometry and t

is a parameter [24]. In an infinitesimal case

ϕ(xG) = (1 + ǫXµ∂µ + · · · )ϕ(x)

= ϕ(x) + ǫL(x)ϕ(x) + · · ·

where Lϕ is given by Xµ(x)∂µϕ(x) and is the Lie derivative of ϕ in the direction of the

Killing vector X(x), see [24]. Repeated application of such infinitesimal isometries gives

ϕ(xG) = lim
N→∞

(
1 +

L(σx(tN ))

N

)(
1 +

L(σx(tN−1))

N

)
× · · ·

· · · ×
(

1 +
L(σx(t0))

N

)
ϕ(x)

= T exp

{∫ t

0
dt̀L(σx(t))

}
ϕ(x)

where T is the time ordering operator. We know that

ϕ̀(x) = ϕ(x) + ǫϕ(xG) = ϕ(x) + ǫT exp

{∫ t

0
dt̀L(σx(t̀))

}
ϕ(x)

is a symmetry, where x(σx(0)) = x and x(σx(t)) = xG. Since all terms in a Taylor

expansion of the time ordered exponential are linearly independent, each term must itself

be a symmetry, so the action must be invariant under the infinitesimal change in the field

δnϕ(x) = ǫ

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtn−1L(t1) · · ·L(tn)ϕ(x)

for n = 0 · · ·∞. The Lagrangian density changes by a divergence,

δnL = ǫ∂µKµ

– 7 –
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and Noether’s theorem gives a corresponding conserved current. For Lorentz transforma-

tions L is Xµ(x)∂µ = aµ
νxν∂µ. It can be shown that the vector field Kµ is given by

Kµ

(n) =

∫ t

0
dt1 · · ·

∫ tn−1

0
dtn

(
ηλ1λn+1aµ

ρx
ρ(t1)∂λ1

ϕ̃∂λn+1
Lλ2

(t2) · · ·Lλn
(tn)ϕ

− ηλ1λn+1aµ
ρx

ρ(t1)∂λ1
Lλ2

(t2)ϕ̃∂λn+1
Lλ3

(t3) · · ·Lλn
(tn)ϕ + · · ·

· · · + (−1)nηλ1λn+1aµ
ρx

ρ(t1)∂λ1
Lλ2

(t2) · · ·Lλn−1
(tn−1)ϕ̃∂λn+1

Lλn
(tn)ϕ+

+ (−1)n+1ηλ1λn+1aµ
ρx

ρ(t1)∂λ1
Lλ2

(t2) · · · Lλn
(tn)ϕ̃∂λn+1

ϕ
)
.

Notice the abuse of notation for the purpose of abbreviation here. The space-time point x(t)

is given by the flow σ and should read σx(t) and L(t) is an abbreviation for L(X(σx(t))

where X is the Killing vector field on the space-time. We could trivially calculate the

Noether currents Jµ

(n) and prove they are conserved and then the full expression for the

current generated by the transformations (3.2) is given by

Jµ =
∑

n

Jµ

(n)

n!
(3.4)

after reintroducing the factors 1/n! arising from the Taylor series of the exponential func-

tion. This expression is clearly also conserved.

It is not difficult to generalise this argument to other space time objects by writing

the transformation as

δΦ(x) = ǫU(x)Φ(xG)

δΦ̃(x) = −ǫΦ̃(xG−1)U(x)

where U(x) is some unitary matrix (or possibly a bigger object if Φ is a type (p, q) tensor)

and in the most general case, the operator L is some generalisation to the normal Lie

derivative of the field.

3.1 Lie algebra

Let ϕ(x) be a free scalar field and x → xGi
be a member of the isometry group G

x → xGi
= Λix + a

where Λ is the matrix generator of Lorentz boosts and rotations and a is a displacement

vector. Then as we have seen a change in the free field δϕ(x) given by

δϕ(x) = ǫiϕ(xGi
) (3.5)

is a symmetry of the action, eq. (3.1). More generally however, it is obvious that linear

combinations of eq. (3.5),

δϕ(x) =
∑

i

ǫiϕ(xGi
)

– 8 –
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are also symmetries of eq. (3.1) with ǫ ∈ C and the sum being over a discrete subgroup

of G for simplicity rather than an integral over the full continuous group. These objects

δϕ(x) clearly satisfy the elementary vector space axioms. Two consecutive transformations

δ1 and δ2 are given by

δ1δ2ϕ(x) =
∑

i

∑

j

ǫ1
i ǫ

2
jϕ(xGiGj

) =
∑

i

∑

j

ǫiǫjϕ(C k
ij xGk

)

with a sum over the index k and with C k
ij = 1 for one combination of i,j and k and zero

otherwise. In that sense the C k
ij s are a group mulitplication table (or Cayley table) for

the discrete subgroup with

GiGj = C k
ij Gk. (3.6)

and so C k
ij has only one non vanishing term in the implied sum over k. Moreover, C k

ij

can also be taken outside thus,

δ1δ2ϕ(x) =
∑

i

∑

j

ǫ1
i ǫ

2
jϕ(xGiGj

) =
∑

i

∑

j

ǫ1
i ǫ

2
jC

k
ij ϕ(xGk

)

and the commutator is given by

[δ1, δ2]ϕ(x) =
∑

i

∑

j

ǫ1
i ǫ

2
j

(
C k

ij − C k
ji

)
ϕ(xGk

) =
∑

i

∑

j

ǫ1
i ǫ

2
jf

k
ij δkϕ(x), (3.7)

hence satisfying a closure relation. With the transformations δϕ(x) defined this way, the

commutators also satisfy the Jacobi identity as follows. Writing out the commutators, we

arrive at

[[δ1, δ2] , δ3] + [[δ2, δ3] , δ1] + [[δ3, δ1] , δ2]ϕ(x)

=
∑

i

∑

j

∑

k

ǫ1
i ǫ

2
jǫ

3
k

(
f l

ij f m
lk + f l

jk f m
li + f l

ki f m
lj

)
ϕ(xGm)

then writing in terms of C k
ij

[[δ1, δ2] , δ3] + [[δ2, δ3] , δ1] + [[δ3, δ1] , δ2] ϕ(x) =

=
∑

i

∑

j

∑

k

ǫ1
i ǫ

2
j ǫ

3
k

(
C l

ij C m
lk − C l

ij C m
kl − C l

ji C m
lk + C l

ji C m
kl

+ C l
jk C m

li − C l
jk C m

il − C l
kj C m

li + C l
kj C m

il

+ C l
ki C m

lj − C l
ki C m

jl − C l
ik C m

lj + C l
ik C m

jl

)
ϕ(xGm) = 0,

by using the associativity property (GiGj)Gk = Gi (GjGk) of the group multiplication and

eq. (3.6). Since the objects δi form a vector space and satisfy commutator closure relations

and the Jacobi identity, they are a Lie algebra g over the field C. Since G has has an

infinite number of elements the Lie algebra g not only has an infinite number of generators,

they are also uncountable due to G being a continous group. However, there exists an

infinite number of discrete subgroups of G such as the dihedral subgroups of SO(3) which
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can be used to form discrete infinite dimensional Lie algebras using the above argument.

Algebras constructed in this way are called ‘group algebras’. (see [25] for a full discussion

on this subject)

In the case when the group G is a discrete subgroup, clearly the dimension of the

algebra g is given by

Dim(g) = |G|

where |G| is the order of the group. In the obvious choice of basis, we have n = |G|
generators of g,

δ1ϕ(x), δ2ϕ(x), . . . , δnϕ(x). (3.8)

A Lie algebra can be decomposed into the direct sum of a non-Abelian algebra ḡ and

possibly a trivial Abelian algebra C (g) (See [26], page 135 and also [27]) refered to as the

centre, as follows

g = ḡ ⊕ C (g) . (3.9)

The group elements G are distributed amongst conjugacy classes which are subsets of G

with mutually orthogonal elements [25].

It turns out that the dimension of C (g) equals the number of conjugacy classes of the

group G and this is a well known theorem in the subject of group algebras. We shall give

a proof that pertains to our application. (For an alternative proof in the more general

setting of group algebras, see [25].) Let us consider a conjugacy class C1 of G containing

r elements say,

C1 = {a1, a2 · · · ar}

and any other element of the group G, say h. Now,

δai
δhϕ(x) = ǫai

ǫhϕ(xaih)

and by using the defining relationship between mutually orthogonal elements in a conjugacy

class that hah−1 = b this equals

δai
δhϕ(x) = ǫaǫhϕ(xhbi

)

where bi is also an element (possibly identical to ai) of C1. Also, for any ai and aj with

ai 6= aj we have bi 6= bj by the mutually orthogonal property of the conjugacy class. It is

possible to construct a generator δ̄ by summing over the elements in C1,

δ̄ϕ(x) = ǫaϕ(xa1
) + ǫaϕ(xa2

) + · · · ǫaϕ(xar ) (3.10)

so

δ̄δhϕ(x) = ǫaǫh

∑

r

ϕ (xarh) = ǫaǫh

∑

r

ϕ(xhbr
).

Now since r runs over all elements in the conjugacy class C1, the right hand sum can be

written as

ǫaǫh

∑

r

ϕ(xhbr
) = ǫaǫh

∑

s

ϕ(xhas
) = δhδ̄ϕ(x)

– 10 –
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giving
[
δ̄, δh

]
= 0.

Now if there are m conjugacy classes C1, . . . , Cm, this implies that the number of Abelian

generators is bigger than or equal to m. Equality is proved by assuming we have found

m linearly independent Abelian generators given by (3.10), δ̄q and then constructing an

(m + 1)th Abelian generator, δ̄m+1, as follows.

δ̄m+1ϕ(x) = ǫa

∑

ar∈C1

λr1ϕ(xar1
) + ǫa

∑

ar∈C2

λr2ϕ(xar2
) + · · ·

where the sum over r is the sum over the r elements arq cointained within the conjugacy

class Cq and λrq is the coefficient of the the rth generator in the qth conjugacy class. Then

if we take the commutator
[
δ̄m+1, δh

]
, it must be zero for for all δh so take the qth term in

the above sum of δm+1δh

ǫaǫh

∑

ar∈Cq

λrqϕ(xarqh) = ǫaǫh

∑

r

λrqϕ(xhbrq
) (3.11)

by again using the expression hah−1 = b. The arq are all distinct elements so it follows that

the brq are also distinct by the mutual orthogonality property of elements in the conjugacy

class. Now relabel the elements brq as follows, which we can do because we are summing

over all elements a (or alternatively b) in Cq

δm+1δhϕ(x) = · · · + ǫaǫh

∑

s

λ̀sqϕ(xhasq
) + · · · (3.12)

with λrq = λ̀sq and we require,

δm+1δhϕ(x) = · · · + ǫaǫh

∑

s

λ̀sqϕ(xhasq
) + · · · = · · · + ǫaǫh

∑

r

λrqϕ(xharq
) + · · · = δhδm+1

(3.13)

which is satisfied only if λsq = λrq because the arq are all distinct linearly independent

elements. So we have

λ1q = λ2q = · · · = λrq

for all conjugacy classes Cq, hence δ̄m+1 is in fact a linear combination of δ̄1, . . . , δ̄m. Hence,

if the n elements of G are distributed amongst m conjugacy classes there are exactly m

Abelian generators of C (g) and the dimension of ḡ from eq. (3.9) is n − m.

4 Transformation of A and A

We shall calculate expressions that leave the the Chalmers-Siegel action L+−[A]+L++−[A]

invariant under the transformation A → À = A + δA. The operators appearing in the de-

nominators of L+−, L++− and L+−···− are most simply expressed in momentum space.

– 11 –



J
H
E
P
0
8
(
2
0
0
9
)
0
7
2

After performing a Fourier transformation on (2.2) we have the following expression ab-

sorbing the interaction term on the left hand side into the kinetic term on the right.

tr

∫

1
{p̄1p̃1 − p̂1p̌1}A1̄A1 − itr

∫

123
p̂1 (ζ3 − ζ2) A1̄A2̄A3̄(2π)4δ(p1 + p2 + p3)

= tr

∫

1
{p̄1p̃1 − p̂1p̌1}B1̄B1 (4.1)

where ζp = p̄/p̂. In configuration space the isometry is x → xG = Λx. Now, Lorentz

transformations commute with the Fourier transform, i.e under the isometry x → xG = Λx

we have BG(p) = B(pG) = B(Λp). We write the change in the B fields as follows

δB(p) = ǫB(pG)

δB(p) = −ǫB(pG−1).

We shall consider the finite isometries in momentum space primarily, however it is

instructive to consider the infinitesimal transformations that preserve the quantity p̄p̃− p̂p̌

and the finite case will follow. We have
(
p̌′, p̂′, p̃′, p̄′

)
= (p̌, p̂, p̃, p̄) + ǫvi

where vi is given by one of

v1 = (p̄, 0, p̂, 0) , v2 = (0, 0,−p̃, p̄) , v3 = (p̃, 0, 0, p̌) ,

v4 = (0, p̃, 0, p̌) , v5 = (0, p̄, p̌, 0) , v6 = (−p̌,−p̂, 0, 0) .

It is simple to substitute these into p̄′p̃′− p̂′p̌′ and retrieve p̄p̃− p̂p̌ hence showing they have

the desired isometry property. By writing the infinitesimal isometries in configuration

space, and then Fourier transforming them, we discover that isometries which preserve the

quantisation surface x̀0 = x0 also preserve p̂ in momentum space. Hence the first three

isometries above preserve the constant x0 surfaces. It is also convenient to notice that

(p̌′, p̂′, p̃′, p̄′) = (p̌, p̂, p̃, p̄) + ǫv3 only alters p̌ and p̄, and leaves p̂ and p̃ unchanged. Since

the coefficients, Γ and Υ depend only on p̂ and p̃ as mentioned earlier, this will simplify

the problem for that one paramater subgroup of isometries. The properties of each of

these transformations will be preserved in the finite case also and we shall use this to our

advantage by considering only the Γ and Υ preserving transformation for the moment but

generalising to the other five transformations will turn out to be fairly straight forward.

4.1 Transformation of A for the isometry that preserves Γ and Υ

Begin with the expression for A in terms of B, derived in [23] and stated earlier,

A1 =

∞∑

n=2

∫

2···n
Υ (1 . . . n)B2 · · ·Bn.

The expression for δA in terms of B is

δA1 =
∞∑

n=2

n∑

i=2

∫

2···n
Υ (1 . . . n)B2 · · · δBi · · ·Bn

= ǫ

∞∑

n=2

n∑

i=2

∫

2···n
Υ (1 . . . n)B2 · · ·BiG

· · ·Bn (4.2)
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where B
i
G is shorthand for B(−piG). To the first four orders, this is

δA1 =ǫB1G + ǫ

∫

23
Υ(123) {B2̄GB3̄ + B2̄B3̄G}

+ ǫ

∫

234
Υ(1234) {B2̄GB3̄B4̄ + B2̄B3̄GB4̄ + B2̄B3̄B4̄G}

+ ǫ

∫

2345
Υ(12345) {B2̄GB3̄B4̄B5̄ + B2̄B3̄GB4̄B5̄ + B2̄B3̄B4̄GB5̄ + B2̄B3̄B4̄B5̄G}

+ · · ·
(4.3)

Temporarily re-instating the delta functions, we can now substitute the inverse expression

B in terms of A given by

B1 =
∞∑

n=2

∫

2···n
Γ (1 . . . n)A2 · · ·An(2π)4δ4 (p1 + · · · + pn) .

There is the added complication that we are evaluating B(p) at B(pG) but this is dealt

with using the property of the delta function that δ4 (Λp1 + · · · + Λpn) = δ4 (p1 + · · · + pn).

B1G is given by

B1G =
∞∑

n=2

∫

2···n
Γ (1G, 2, . . . , n)A2 · · ·An(2π)4δ4

(
pG
1 + · · · + pn

)

and we can change variables under the integrals using the isometry p → pG to get the

following expression. It is an isometry so the Jacobian of the transformation is 1,

B1G =
∞∑

n=2

∫

2···n
Γ (1G, 2G, . . . , nG) A

2
G · · ·AnG(2π)4δ4

(
pG
1 + · · · + pG

n

)

which is

B1G =
∞∑

n=2

∫

2···n
Γ (1G, 2G, . . . , nG) A

2
G · · ·AnG(2π)4δ4 (p1 + · · · + pn)

using the stated property of the delta function. Further, seeing as for the moment we are

considering the one transformation that leaves Γ and Υ invariant we have

B1G =
∞∑

n=2

∫

2···n
Γ (1, 2, . . . , n) A

2
G · · ·AnG(2π)4δ4 (p1 + · · · + pn) .

Performing the substitution into (4.3) and working up to fourth order only for now, taking

care with delta functions, maintaining the order of the A fields and labeling the momentum

arguments we get a somewhat nasty looking expression which is included in appendix A.

When like terms are collected and their coefficients calculated in terms of independent mo-

menta the expression simplifies into something more tangible. We shall collect terms order

by order. First order is trivial, we get δA = ǫA1G + · · · . The next two orders in A are given

below and the more cumbersome fourth order result is included in appendix A by (A.1).
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Figure 1. δA

Second order.

δA1 = ǫA1G + ǫi

∫

23

{
1̂ A2̄GA3̄G

(23)
− 1̂ A2̄GA3̄

(23)
− 1̂ A2̄A3̄G

(23)

}
+ · · ·

Third order.

· · · + ǫ

∫

234

{
1̂q̂ A2̄GA3̄GA4̄G

(q, 2)(q, 2 + 3)
+

1̂q̂ A2̄GA3̄GA4̄

(q, 2)(q, 4)
+

1̂q̂ A2̄A3̄GA4̄G

(q, 3)(q, 1)

+
1̂q̂ A2̄GA3̄A4̄

(q, 3)(q, 3 + 4)
+

1̂q̂ A2̄A3̄GA4̄

(q, 4)(q, 4 + 1)
+

1̂q̂ A2̄A3̄A4̄G

(q, 1)(q, 1 + 2)

}
+ · · ·

where for any term with A2̄ · · ·AīG · · ·Aj̄G · · ·An̄, q is defined to be q = pi + · · · + pj. We

may now be tempted to hypothesize the full expression. We write

δA1 = −ǫ

∞∑

n=2

n∑

i=2

n∑

j=i

∫

2···n

1̂

q̂
Γ(q, i, . . . , j)Γ(q, j + 1, . . . , n, 1 · · · , i − 1) ×

×A2̄ · · ·AīG · · ·Aj̄G · · ·An̄ (4.4)

where Γ is given by (2.9) and q = pi + · · · + pj as before. Notice this is a cyclic insertion

of the momentum arguments into the product of the Γs. It is a simple matter to check

that this expression does indeed generate the first, second, third and fourth order terms. A

diagrammatic representation of this expression is extremely beneficial where we attach A

fields to the external legs of a momentum flow diagram whose momenta flow out of the two

vertices Γ connected by an internal line with momentum q and summing over all diagrams,

figure 1, where the vertices labeled V1 and V3 are expressed in terms of k, q and Γ which

we are forcing to be invariant at the moment and are given explicitly by

V1 =
â

q̂
Γ V3 = Γ.

It is reasonable to expect the transformations of the field A satisfy the same algebra

and in fact this is easy to prove. From eq. (4.2) we have

δ2A1 =

n∑

q=2

∞∑

n=2

∫

2···n
Υ(1 · · · n)B2̄ · · · δ2Bq̄ · · ·Bn̄.

– 14 –



J
H
E
P
0
8
(
2
0
0
9
)
0
7
2

Two consecutive transformations are given by

δiδjA1 =
n∑

p=2

n∑

q=2

∞∑

n=2

∫

2···n
Υ(1 · · · n)B2̄ · · · δiBp̄ · · · δjBq̄ · · ·Bn̄

and the commutator is

[δi, δj ] A1 =

n∑

p=2

n∑

q=2

∞∑

n=2

∫

2···n

(
Υ(1 · · · n)B2̄ · · · δiBp̄ · · · δjBq̄ · · ·Bn̄−

− Υ(1 · · · n)B2̄ · · · δjBp̄ · · · δiBq̄ · · ·Bn̄

)
.

After summing over p and q all terms are zero except those for which p = q, leaving only

[δi, δj ] A1 =

n∑

p=2

∞∑

n=2

∫

2···n
Υ(1 · · ·n) (B2̄ · · · δiδjBp̄ · · ·Bn̄ − B2̄ · · · δjδiBp̄ · · ·Bn̄) =

=
n∑

p=2

∞∑

n=2

∫

2···n
Υ(1 · · ·n)

(
B2̄ · · ·Bp̄

Gji · · ·Bn̄ − B2̄ · · ·Bp̄
Gij · · ·Bn̄

)
=

=
(
C k

ij − C k
ji

) n∑

p=2

∞∑

n=2

∫

2···n
Υ(1 · · · n)B2̄ · · ·Bp̄Gk · · ·Bn̄ =

=
(
C k

ij − C k
ji

)
δkA1

which has the same structure constants f k
ij =

(
C k

ij − C k
ji

)
as the commutators in the

free theory, eq. (3.7) thus identifying the algebra unambiguously with that of the free

theory. It makes sense therefore to study the algebra of the transformations given by

eq. (4.4) in the free theory knowing that the algebra in the less trivial self dual Yang-Mills

setting will be the same.

4.2 Transformation of A for the isometry that preserves Γ and Υ

The expression for the change in the conjugate field is not dissimilar, although the expansion

is significantly more detailed. The change in the free B field is defined as

δB(p) = −ǫB(pG−1).

Let us consider the change in A in terms of B.

δA1 = δB1 −
∫

23

{
2̂

1̂
Ξ2(123)δB 2̄B3̄ −

2̂

1̂
Ξ2(123)B 2̄δB3̄−

− 3̂

1̂
Ξ3(123)δB2̄B3̄ −

3̂

1̂
Ξ3(123)B2̄δB3̄

}
− · · · .
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Now substitute the change in the B fields, δBp = ǫB
pG−1 and δB = −ǫB

pG−1

δA1 = − ǫB
1G−1+

+ ǫ

∫

23

{
2̂

1̂
Ξ2(123)B

2̄G−1 B3̄ −
2̂

1̂
Ξ2(123)B 2̄B3̄G−

− 3̂

1̂
Ξ3(123)B2̄GB3̄ + ǫ

∫

23

3̂

1̂
Ξ3(123)B2̄B3̄G−1

}

+ ǫ

∫

234

{
2̂

1̂
Ξ2(1234)B

2̄G−1B3̄B4̄ −
2̂

1̂
Ξ2(1234)B 2̄B3̄GB4̄ −

2̂

1̂
Ξ2(1234)B 2̄B3̄B4̄G

− 3̂

1̂
Ξ3(1234)B2̄GB3̄B4̄ +

3̂

1̂
Ξ3(1234)2̄B3̄G−1 B4̄ −

3̂

1̂
Ξ3(1234)B2̄B3̄B4̄G

− 4̂

1̂
Ξ4(1234)B2̄GB3̄B4̄−

4̂

1̂
Ξ4(1234)B2̄B3̄GB4̄+

4̂

1̂
Ξ4(1234)B2̄B3̄B4̄G−1

}
+· · ·

to third order. In a similar fashion to the previous calculation, we substitute the inverse

expressions, B[A] and B[A,A] which is given by the expansion in appendix B. Again,

we shall collect terms order by order and we shall see that we have already done most

of the work when calculating the coefficients earlier. First order is again trivial, we get

δA1 = −ǫA1G−1 + · · · . At second order we can pick out the terms and express Ξ and Θ

in terms of independent momenta, no extra calculation is required and the result is given

below. The third order result is given in appendix B by eq. (B.1)

Second order.

δA1 = −ǫA
1G−1 − ǫ

∫

23
i

{
2̂

1̂

2̂

(31)
A2̄G−1A3̄G−1 − 3̂

1̂

3̂

(12)
A2̄G−1 A3̄G−1

+
2̂

1̂

2̂

(31)
A

2̄G−1A3̄ −
2̂

1̂

2̂

(31)
A2̄A3̄G

− 3̂

1̂

3̂

(12)
A2̄GA3̄ +

3̂

1̂
i

3̂

(12)
A2̄A3̄G−1

}
+ · · · .

We hypothesize the full expression is

δA1 = −ǫ

∞∑

n=2

n∑

k=2

k−1∑

i=2

k−1∑

j=i

∫

2···n

k̂2

1̂q̂
Γ(q, i, . . . , j)Γ(q, j + 1, . . . , n, 1, . . . , i − 1) ×

×A2̄ · · ·AīG · · ·Aj̄G · · ·Ak̄ · · ·An̄

+ǫ

∞∑

n=2

n∑

k=2

k∑

i=2

n∑

j=k

∫

2···n

k̂2

1̂q̂
Γ(q, i, . . . , j)Γ(q, j + 1, . . . , n, 1, . . . , i − 1) ×

×A2̄ · · ·AīG
−1 · · ·A

k̄G−1 · · ·A
j̄G−1An̄

−ǫ

∞∑

n=2

n∑

k=2

n∑

i=k+1

n∑

j=i

∫

2···n

k̂2

1̂q̂
Γ(q, i, . . . , j)Γ(q, j + 1, . . . , n, 1, . . . , i − 1) ×

×A2̄ · · ·Ak̄ · · ·AīG · · ·Aj̄G · · ·An̄. (4.5)
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Figure 2. δA

It is possible to verify that this expression reproduces first, second and third order terms

and again, encoding the expression in a diagrammatic fashion is beneficial figure 2. We

have a series of similar diagrams to figure 1 but with cyclic permutations of the A field over

diagrams in the series. Notice also, the distribution of AG and AG−1 legs in relation to the

position of the conjugate field. The transformed legs all flow out of the right hand vertex

in each diagram. If the conjugate field is attached to the right hand vertex, then all fields

attached to the right hand vertex are transformed as AG−1 . If the congugate field is not

connected to the right hand vertex but rather the left vertex, then the fields attached to it

are transformed as AG. The symbol k labels the position of the conjugate field and a labels

the position of the ‘in-coming’ leg of the diagram. The vertices, V2, V4 and V5 are given by

V2 =
âk̂2

q̂â2
Γ V4 =

q̂

â
Γ V5 =

k̂2

q̂2
Γ.

We now have a conjecture for δA and δA for the transformation which leaves p̌ and p̃

unchanged. We shall not prove this now but instead we shall hypothesise the most general

case by considering the remaining five Lorentz transformations using results thus far and

prove that they leave the Chalmers-Siegel action invariant.
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4.3 Most general transformation using the full Lorentz group

Up to now we have considered the one isometry that leaves the coefficients Γ and Υ invari-

ant, namely (
p̌′, p̂′, p̃′, p̄′

)
= (p̌, p̂, p̃, p̄) + ǫ (p̃, 0, 0, p̌) .

Generally of course, Γ is not invariant under the six parameter independent Lorentz trans-

formations. In the case of the isometries that preserve the quantisation surface (surfaces

of constant x0 or equivalently constant p̂), the prefactors 1̂/q̂ and k̂2/1̂q̂ appearing in (4.4)

and (4.5) respectively are invariant but more generally these also transform under the full

Lorentz group. Writing the vertex factors in the diagrams as we have done in figure 1

and figure 2 it strongly suggests the form of the most general expressions as figure 3, with

transformed expressions in the appropriate vertices. The proof of these invariances is ob-

tained by substituting them into the change in action, (4.1). Algebraically, performing the

variation of the action gives us.

δS = tr

∫

1
{p̄1p̃1 − p̂1p̌1} (δA1̄)A1 + tr

∫

1
{p̄1p̃1 − p̂1p̌1}A1̄(δA1)

−itr

∫

123
p̂1 (ζ3 − ζ2) (δA1̄)A2̄A3̄ − itr

∫

123
p̂1 (ζ3 − ζ2)A1̄(δA2̄)A3̄

−itr

∫

123
p̂1 (ζ3 − ζ2) A1̄A2̄(δA3̄). (4.6)

It will be easier to separate out the free and interacting parts of the action and consider

their diagrams separately, i.e δS = δSF + δSI . Each piece reduces to a simpler algebraic

expression by considering their diagrammatic expansions, and taken together they will

sum to zero. Diagrammatically, the free action SF is a sum over two, two point vertices

and the interacting part is a sum over three point vertices as shown in figure 4. where

Ω = {p̄1p̃1 − p̂1p̌1}. Recall that Ω is invariant under isometries x → xG whereas the

expression I appearing in figure 4 is not invariant. The sum over all diagrams for δSF is

relatively straight forward. We have figure 5 where again, the symbol k labels the leg to

which the conjugate field is attached and we are free to label the momentum of this leg,

p1. Now we can apply the isometry x → xG to diagrams containing AG−1 , figure 6. Notice

the cyclic permutation of the A field which is equivalent to a cyclic permutation of the

two point vertex, Ω. Algebraically then, these diagrams reduce to the following expression,

involving a product of Γs and sum over k of Ω(k) arising from cyclically permuting the Ω

vertex over the out going legs of the V and V G vertices,

δSF = ǫ
∞∑

n=2

n∑

i=2

n∑

j=i

∫

1···n
Xi,j (1, . . . , n) A1̄ · · ·AīG · · ·Aj̄G · · ·An̄

where the coefficient Xi,j is given by

Xi,j (1, . . . , n) =

= − 1̂2

q̂2

( q̂

1̂
Ω1 + · · · + q̂

î − 1
Ωi−1 +

q̂G

îG
ΩG

i + · · · + q̂G

ĵG
ΩG

j +
q̂

ĵ + 1
Ωj+1 + · · · + q̂

n̂
Ωn

)
×

× Γ
(
qG, iG, . . . , jG

)
Γ (q, j + 1, . . . , i − 1) .
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Figure 3. Expressions for δA and δA for the full lorentz group

The interacting part is similar except with the cyclic permutation of a three point vertex

around the V vertices as opposed to the two point vertex. We attach the diagrams δA

and δA from figure 3 respectively to δSI as shown in figure 7. where k, again labels

the conjugate field which we are free to label as momentum p1 and a labels the leg to

which the vertex I is attached. We proceed to reverse the isometry from the appropriate

diagrams, figure 8. If the leg k has momentum p1, these diagrams are interpreted as a

cyclic permutation of the three point vertex, I. Adding cyclic contributions together gives.

δSI = ǫ

∞∑

n=2

n∑

i=2

n∑

j=i

∫

1···n
Yi,j (1, . . . , n)A1̄ · · ·AīG · · ·Aj̄GAn̄
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Figure 4. δS

Figure 5. Change in the free part of the action δSF

with the coefficient Yi,j given by

Yi,j (1, . . . , n) = −i
1̂2

iq̂2




j−1∑

k=i

{
kG, (k + 1)G

}

k̂Gk̂ + 1
G

(
qG, PG

i,k

)
+

i−2∑

k=j+1

{k, k + 1}
k̂k̂ + 1

(q, Pi,k)


×

×Γ
(
qG, iG, . . . , jG

)
Γ (q, j + 1, . . . , i − 1) .
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Figure 6. Change in the free part of the action δSF

The notation, Pi,k means Pi,k = pi + · · · + pk. Expanding out the summations in the

brackets, either explicitly or by comparison with equation (3.6) in [23], they reduce to

j−1∑

k=i

{k, k + 1}
k̂k̂ + 1

(q, Pi,k) = −q̂ (ω−q + ωi + · · · + ωj)

with q = pi + · · · + pj = −pj+1 − · · · − pn − p1 + · · · − pi−1 and ωp = p̄p̃/p̂. So we have

Yi,j =
1̂2

q̂2

(
q̂G
{

ωG
−q + ωG

i + · · · + ωG
j

}
+ q̂
{

ωq + ωj+1 + · · · + ωi−1

})
×

× Γ
(
qG, iG, . . . , jG

)
Γ (q, j + 1, . . . , i − 1) .
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Figure 7. Change in the interacting part of the action δSI

Now since −q + pi + · · · + pj = 0 and q + pj+1 + · · · + pn + p1 + · · · + pi−1 = 0 we can

subtract these from each of the brackets ω−q + pi + · · · + pj as follows

Yi,j =
1̂2

q̂2

(
q̂G
{

ωG
−q −−q

̂
G

+ ωG
i − ǐG + · · · + ωG

j − ǰG
}

+

+ q̂
{
ωq − q̌ + ωj+1 − j + 1

̂

+ · · · + ωi−1 − i − 1

̂})
×

× Γ
(
qG, iG, . . . , jG

)
Γ (q, j + 1, . . . , i − 1)
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Figure 8. Change in the interacting part of the action δSI

and then take out a factor of 1/p̂ from each term ωP − p̌ as follows

Yi,j =
1̂2

q̂2

(
q̂G

q̂G
ΩG

q +
q̂G

îG
ΩG

i + · · · + q̂G

ĵG
ΩG

j − q̂

q̂
Ω−q +

q̂

ĵ + 1
Ωj+1 + · · · + q̂

î − 1
Ωi−1

)
×

×Γ
(
qG, iG, . . . , jG

)
Γ (q, j + 1, . . . , i − 1) .
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Terms in Ωq and Ω−q cancel, using the fact that ΩG = Ω. So we arrive at

Yi,j =
1̂2

q̂2

(
q̂

1̂
Ω1 + · · · + q̂

î − 1
Ωi−1 +

q̂G

îG
ΩG

i + · · · + q̂G

ĵG
ΩG

j +
q̂

ĵ + 1
Ωj+1 + · · · + q̂

n̂
Ωn

)
×

×Γ
(
qG, iG, . . . , jG

)
Γ (q, j + 1, . . . , i − 1)

= −Xi,j

and so coefficients of linearly independent, like terms in A1̄ · · ·AīG · · ·Aj̄G · · ·An̄ in δSF

and δSI sum to zero, Xi,j + Yi,j = 0 and the result follows

δS = δSF + δSI = 0

thus not only proving that the expressions (4.4) and (4.5) and their associated momentum

flow diagrams are indeed symmetries of the Chalmers-Siegel action and the most general

transformations in figure 3 are also symmetries of the action (4.1).

5 Conclusion and summary

The Chalmers-Siegel action which describes self-dual Yang-Mills theory can be mapped to

a free theory by a canonical transformation arising from the construction of a lagrangian

formalism of the MHV rules. Free theories have a high degree of symmetry. In addition

to the well-known symmetries induced by infinitesimal isometries there are those in which

infinitesimal changes in the fields are related to finite isometries which we have reviewed

briefly. The Lie algebra of these transformations is built out of the group algebra of the

isometries, and this can be used to decompose the Lie algebra into a direct sum of its

Abelian and non-Abelian parts. By studying the canonical transformation we found the

corresponding symmetries of the self-dual Yang-Mills theory, and showed that these satisfy

the same Lie algebra as in the free theory. We expect that these results are generalisable

to the supersymmetric case and in particular to N = 4 super Yang-Mills on the light

cone. It will also be interesting to see which (if any) of these symmetries survive the full

Yang-Mills theory on the light cone, given by eq. (2.1). We expect only a subset of the

transformations to survive. Further, by considering the dihedral subgroups D(2n) of SO(3)

and counting the number af Abelian generators, we find that the number of non-Abelian

generators increases in multiples of 3 with increasing n. We expect to find that the algebra

constructed in this way using the dihedral groups is going to be a sum of su(2) algebras.

Throughout this paper we have restricted ourselves to studying the isometries of the

Lorentz group. Extending the result to the include displacements is somewhat more trivial

and a phase factor appears in the expressions using the fundamental property of Fourier

transforms that

φ(x + a)
FT→ eipaφ̃(p).
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For example under a pure translation x → x + a, following the same procedure to the one

we have given throughout, we would get

δA1 = −ǫ

∞∑

n=2

n∑

i=2

n∑

j=i

∫

2···n

1̂

q̂
Γ(q, i, . . . , j)Γ(q, j + 1, . . . , n, 1 · · · , i − 1) ×

× exp
{
i(pi

µ + · · · + pj
µ)aµ

}
A2̄ · · ·An̄

neglecting various factors of 2π. A similar expression would hold for the transformation of

the conjugate field δA with the exponential factors appearing in each term of the sum.
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A Order by order calculation of δA

Expanding δA in terms of B as per (4.2) and substituting B[A] up to fourth order, we

arrive at the following expression

δA1̄ = ǫA1̄G +

∫

23
Γ(123)A2̄GA3̄G +

∫

234
Γ(1234)A2̄GA3̄GA4̄G

+

∫

2345
Γ(12345)A2̄GA3̄GA4̄GA5̄G

+ ǫ

∫

23
Υ(123)

(
A2̄G +

∫

45
Γ(2̄45)A4̄GA5̄G +

∫

456
Γ(2̄456)A4̄GA5̄GA6̄G

)
×

×
(

A3̄ +

∫

78
Γ(3̄78)A7̄A8̄ +

∫

789
Γ(3̄789)A7̄A8̄A9̄

)

+ ǫ

∫

23
Υ(123)

(
A2̄ +

∫

45
Γ(2̄45)A4̄A5̄ +

∫

456
Γ(2̄456)A4̄A5̄A6̄

)
×

×
(

A3̄G +

∫

78
Γ(3̄78)A7̄GA8̄G +

∫

789
Γ(3̄789)A7̄GA8̄GA9̄G

)

+ ǫ

∫

234
Υ(1234)

(
A2̄G +

∫

56
Γ(2̄56)A5̄GA6̄G

)(
A3̄ +

∫

78
Γ(3̄78)A7̄A8̄

)
×

×
(

A4̄ +

∫

9 10
Γ(4̄9 10)A9̄A1̄0

)

+ ǫ

∫

234
Υ(1234)

(
A2̄ +

∫

56
Γ(2̄56)A5̄A6̄

)(
A3̄G +

∫

78
Γ(3̄78)A7̄GA8̄G

)
×

×
(

A4̄ +

∫

9 10
Γ(4̄9 10)A9̄A1̄0

)

+ ǫ

∫

234
Υ(1234)

(
A2̄ +

∫

56
Γ(2̄56)A5̄A6̄

)(
A3̄ +

∫

78
Γ(3̄78)A7̄A8̄

)
×
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×
(

A4̄G +

∫

9 10
Γ(4̄9 10)A9̄GA

1̄0G

)

+ ǫ

∫

2345
Υ(12345)A2̄GA3̄A4̄A5̄ + ǫ

∫

2345
Υ(12345)A2̄A3̄GA4̄A5̄

+ ǫ

∫

2345
Υ(12345)A2̄A3̄A4̄GA5̄ + ǫ

∫

2345
Υ(12345)A2̄A3̄A4̄A5̄G .

Despite looking horrendous, when like terms are collected and their coefficients calculated

the expression simplifies into something more tangeable. We shall collect terms order by

order. The reader may wish to study an example to lower orders first, say cubic terms to

become used to the calculations. First order is trivial, we get δA = ǫA1G + · · · .
Second order isn’t much more difficult, we simply find the terms that are quadratic in

the A fields when expanding out the brackets. We get

δA1 = ǫA1G + ǫ

∫

23
{Γ(123)A2̄GA3̄G + Υ(123)A2̄GA3̄ + Υ(123)A2̄A3̄G} + · · · .

Further, when Γ and Υ are expressed in terms of their independent momenta the expres-

sion is

δA1 = ǫA1G + ǫ

∫

23

{
i

1̂

(23)
A2̄GA3̄G − i

1̂

(23)
A2̄GA3̄ − i

1̂

(23)
A2̄A3̄G

}
+ · · · .

Third order gets more tricky. Taking the third order terms out of the expansion, we get

· · · + ǫ

∫

234
Γ(1234)A2̄GA3̄GA4̄G +

+ ǫ

∫

2378
Υ(123)Γ(3̄78)A2̄GA7̄GA8̄ + ǫ

∫

2345
Υ(123)Γ(2̄45)A4̄A5̄GA3̄G

+ ǫ

∫

2378
Υ(123)Γ(3̄78)A2̄A7̄GA8̄G + ǫ

∫

2345
Υ(123)Γ(2̄45)A4̄GA5̄GA3̄

+ ǫ

∫

234
Υ(1234)A2̄GA3̄A4̄ + ǫ

∫

234
Υ(1234)A2̄A3̄GA4̄

+ ǫ

∫

234
Υ(1234)A2̄A3̄A4̄G + · · · .

Now we carefully change variables of integration, maintaining the order of the fields since

they contain group matrices, and collect terms,

· · ·+ǫ

∫

234

{
Γ(1234)A2̄GA3̄GA4̄G + Υ(154)Γ(5̄23)A2̄GA3̄GA4̄ + Υ(125)Γ(5̄34)A2̄A3̄A4̄G+

+{Υ(125)Γ(5̄34)+Υ(1234)}A2̄GA3̄A4̄+{Υ(154)Γ(5̄23)+Υ(1234)}A2̄A3̄A4̄G+

+ Υ(1234)A2̄A3̄GA4̄

}
+ · · ·

where p5 is minus the sum of the remaining arguments in the coefficient. For example, in

the second term, p5 = −p1 − p4 = +p2 + p3. Remarkably, when expressed in terms of their

– 26 –



J
H
E
P
0
8
(
2
0
0
9
)
0
7
2

independent momenta they reduce to simpler expressions, in particular the fourth and fifth

terms whose coefficients are {Υ(125)Γ(5̄23) + Υ(1234)} and {Υ(154)Γ(5̄23) + Υ(1234)} re-

spectively reduce nicely. For example, take the fifth coefficient bearing in mind momentum

conservation, 1 + 2 + 3 + 4 = 0,

Υ(154)Γ(5̄23) + Υ(1234) =

(
−i

1̂

(25)

)(
i

ˆ̄5

(34)

)
+

1̂

(23)

3̂

(34)

taking out a factor 1̂/(34) gives

1̂

(34)

(
1̂ + 2̂

(12)
+

3̂

(23)

)

then putting the expression in brackets under a common denominator and expanding out

terms on the numerator

1̂

(34)

(
1̂2̂3̃ + 2̂2̂3̃ − 2̂2̃3̂ − 3̂1̃2̂

(12)(23)

)

giving

1̂2̂

(12)(23)
=

1̂2̂

(23)(2, 3 + 4)

expressing the coefficients in this way and using momentum conservation to express the

denominators in a certain way, the third order expression is

· · · + ǫ

∫

234

{
1̂q̂ A2̄GA3̄GA4̄G

(q, 2)(q, 2 + 3)
+

1̂q̂ A2̄GA3̄GA4̄

(q, 2)(q, 4)
+

1̂q̂ A2̄A3̄GA4̄G

(q, 3)(q, 1)

+
1̂q̂ A2̄GA3̄A4̄

(q, 3)(q, 3 + 4)
+

1̂q̂ A2̄A3̄GA4̄

(q, 4)(q, 4 + 1)
+

1̂q̂ A2̄A3̄A4̄G

(q, 1)(q, 1 + 2)

}
+ · · ·

where for any term with A2̄ · · ·AīG · · ·Aj̄G · · ·An̄, q is defined to be q = pi + · · ·+pj. Given

these expressions it is tempting to substitute q = pi + · · ·+ pj and simplify the coefficients

further. However, we write the terms like this deliberately because as we shall see fourth

order terms follow a similar pattern which would not otherwise be visible.

We can collect together terms that are quartic in A within the confines of an A4 page
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too. Doing so, and carefully relabelling variables of integration, we arrive at

· · ·+ǫ

∫

2345

{
Γ(12345)A2̄GA3̄GA4̄GA5̄G+

+ Υ(165)Γ(6̄234)A2̄GA3̄GA4̄GA5̄ + Υ(126)Γ(6̄345)A2̄A3̄GA4̄GA5̄G+

+ {Υ(167)Γ(6̄23)Γ(7̄45) + Υ(1645)Γ(6̄23)}A2̄GA3̄GA4̄A5̄+

+ Υ(1265)Γ(6̄34)A2̄A3̄GA4̄GA5̄+

+ {Υ(167)Γ(6̄23)Γ(7̄45) + Υ(1236)Γ(6̄45)}A2̄A3̄A4̄GA5̄G+

+{Υ(126)Γ(6̄345)+Υ(1236)Γ(6̄45)+Υ(1265)Γ(6̄34)+Υ(12345)}A2̄GA3̄A4̄A5̄+

+ {Υ(1236)Γ(6̄45) + Υ(12345)}A2̄A3̄GA4̄A5̄+

+ {Υ(1645)Γ(6̄23) + Υ(12345)}A2̄A3̄A4̄GA5̄+

+ {Υ(165)Υ(6̄234) + Υ(1265)Γ(6̄34) + Υ(1645)Γ(6̄23) + Υ(12345)}

× A2̄A3̄A4̄A5̄G

}
+ · · · .

The above expression simplifies in a similar way to earlier. We shall state the result first,

and give an example of one of the calculations. The others are similar, the most complicated

ones can be checked on a computer algebra package.

· · · + ǫ

∫

2345
i

{
1̂q̂2A2̄GA3̄GA4̄GA5̄G

(q, 2)(q, 2 + 3)(q, 2 + 3 + 4)
A2̄G +

1̂q̂2A2̄GA3̄GA4̄GA5̄

(q, 2)(q, 2 + 3)(q, 5)
+

+
1̂q̂2A2̄A3̄GA4̄GA5̄G

(q, 3)(q, 3 + 4)(q, 1)
+

1̂q̂2A2̄GA3̄GA4̄A5̄

(q, 2)(q, 4)(q, 4 + 5)
+

+
1̂q̂2A2̄A3̄GA4̄GA5̄

(q, 3)(q, 5)(q, 5 + 1)
+

1̂q̂2A2̄A3̄A4̄GA5̄G

(q, 4)(q, 1)(q, 1 + 2)

+
1̂q̂2A2̄GA3̄A4̄A5̄

(q, 3)(q, 3 + 4)(q, 3 + 4 + 5)
+

1̂q̂2A2̄A3̄GA4̄A5̄

(q, 4)(q, 4 + 5)(q, 4 + 5 + 1)
+

+
1̂q̂2A2̄A3̄A4̄GA5̄

(q, 5)(q, 5 + 1)(q, 5 + 1 + 2)
+

1̂q̂2A2̄A3̄A4̄A5̄G

(q, 1)(q, 1 + 2)(q, 1 + 2 + 3)

}
+ · · · .

(A.1)

As an example, let us take the fourth term

Υ(167)Γ(6̄23)Γ(7̄45) + Υ(1645)Γ(6̄23) = i
1̂(2̂ + 3̂)

(23)(45)

{
4̂ + 5̂

(2 + 3, 4 + 5)
− 4̂

(2 + 3, 4)

}
,

upon expressing the coefficients Γ and Υ explicitly in terms of their independent momenta

and taking out a factor i 1̂(2̂+3̂)
(23)(45) . Further, we substitute p4 + p5 = −p1 − p2 − p3 and take

out a factor of −1

= −i
1̂(2̂ + 3̂)

(23)(45)

{
1̂ + 2̂ + 3̂

(2 + 3, 4 + 5)
+

4̂

(2 + 3, 4)

}
.

Let’s call q = 2 + 3, and put the term in brackets under a common denominator i.e,

= −i
1̂q̂

(23)(45)

(
(1̂ + q̂)(q, 4) + 4̂(1, q)

(1, x)(q, 4)

)
.
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Now expand the numerator, two terms cancel, then a factor of q̂ can be taken outside the

bracket giving

= −i
1̂q̂2

(23)(45)(1, q)(q, 4)
(1 + q, 4) = −i

1̂(2̂ + 3̂)2

(23)(1, 2 + 3)(2 + 3, 4)
(45).

Then using momentum conservation, we get the simplified coefficient

Υ(167)Γ(6̄23)Γ(7̄45) + Υ(1645)Γ(6̄23) = i
1̂q̂2

(q, 2)(q, 4)(q, 4 + 5)

where q = p2 + p3. Calculation of the other terms is equally as simple.

B Order by order calculation of δA

We expand δA in terms of the free field B, B, δB and δB and as per (4.5). working to

third order only. In a similar fashion to the calculation of appendix A, we substitute the

inverse expressions, B[A] and B[A,A] which is given by the expansion

B1̄ = A1̄ +

∫

23

{
2̂

1̂
Θ2(1̄23)A2̄A3̄ +

3̂

1̂
Θ3(1̄23)A2̄A3̄ +

+
2̂

1̂
Θ2(1̄234)A2̄A3̄A4̄ +

3̂

1̂
Θ3(1̄234)A2̄A3̄A4̄ +

4̂

1̂
Θ4(1̄234)A2̄A3̄A4̄

}
+ · · · .

Performing this substitution, maintaining third order terms only, we arrive at

δA1 = −ǫA
1G−1 + ǫ

∫

23

2̂

1̂
Θ2(123)A

2̄G−1 A
3̄G−1 + ǫ

∫

23

3̂

1̂
Θ3(123)A

2̄G−1 A
3̄G−1 +

+ ǫ

∫

234

4̂

1̂
Θ4(1234)A2̄G−1 A3̄G−1 A4̄G−1 + ǫ

∫

234

3̂

1̂
Θ3(1234)A2̄G−1 A3̄G−1 A4̄G−1

+ ǫ

∫

234

2̂

1̂
Θ2(1234)A

2̄G−1 A
3̄G−1 A

4̄G−1

+ ǫ

∫

23

2̂

1̂
Ξ2(123)

(
A2̄G−1 +

∫

45

4̂

2̂
Θ2(2̄45)A4̄G−1A5̄G−1 +

∫

45

5̂

2̂
Θ3(2̄45)A4̄G−1 A5̄G−1

)
×

×
(

A3̄ +

∫

67
Γ(3̄67)A6̄A7̄

)

− ǫ

∫

23

2̂

1̂
Ξ2(123)

(
A2̄ +

∫

45

4̂

2̂
Θ2(2̄45)A4̄A5̄ +

∫

45

5̂

2̂
Θ3(2̄45)A4̄A5̄

)
×

×
(

A3̄G +

∫

67
Γ(3̄67)A6̄GA7̄G

)

− ǫ

∫

23

3̂

1̂
Ξ3(123)

(
A2̄G +

∫

45
Γ(2̄45)A4̄GA5̄

)
×

×
(

A3̄ +

∫

67

6̂

3̂
Θ2(3̄67)A6̄A7̄ +

∫

67

7̂

3̂
Θ3(3̄67)A6̄A7̄

)
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+ ǫ

∫

23

3̂

1̂
Θ3(123)

(
A2̄ +

∫

45
Γ(2̄45)A4̄A5̄

)
×

×
(

A
3̄G−1 +

∫

67

6̂

3̂
Ξ2(3̄67)A

6̄G−1A7̄G−1 +

∫

67

7̂

3̂
Ξ3(3̄67)A

6̄G−1 A
7̄G−1

)

+ ǫ

∫

234

2̂

1̂
Ξ2(1234)A

2̄G−1A3̄A4̄−ǫ

∫

234

2̂

1̂
Ξ2(1234)A2̄A3̄GA4̄−ǫ

∫

234

2̂

1̂
Ξ2(1234)A2̄A3̄A4̄G

− ǫ

∫

234

3̂

1̂
Ξ3(1234)A2̄GA3̄A4̄+ǫ

∫

234

3̂

1̂
Ξ3(1234)A2̄A3̄G−1A4̄−ǫ

∫

234

3̂

1̂
Ξ3(1234)A2̄A3̄A4̄G

− ǫ

∫

234

4̂

1̂
Ξ4(1234)A2̄GA3̄A4̄−ǫ

∫

234

4̂

1̂
Ξ4(1234)A2̄A3̄GA4̄+ǫ

∫

234

4̂

1̂
Ξ4(1234)A2̄A3̄A4̄G−1 +· · ·.

Again, we shall collect terms order by order we shall see that we have already done most

of the work already when calculating the coefficients in appendix A. First order is again

trivial, we get δA1 = −ǫA
1G−1 + · · · . At second order we can pick out the terms and

express Ξ and Θ in terms of independent momenta, no extra calculation is required.

δA1 = −ǫA
1G−1 + ǫ

∫

23

{
2̂

1̂
Θ2(123)A2̄G−1 A3̄G−1 +

3̂

1̂
Θ3(123)A2̄G−1 A3̄G−1

+
2̂

1̂
Ξ2(123)A

2̄G−1 A3̄ −
2̂

1̂
Ξ2(123)A2̄A3̄G

− 3̂

1̂
Ξ3(123)A2̄GA3̄ +

3̂

1̂
Ξ3(123)A2̄A3̄G−1

}
+ · · · .

As per [23] we have

Ξ2(123) = −Υ(231) = i
2̂

(31)

Ξ3(123) = −Υ(312) = i
3̂

(12)

and we can deduce for ourselves

Θ2(123) = −Γ(231) = −i
2̂

(31)

Θ3(123) = −Γ(312) = −i
3̂

(12)

so to second order we find

δA1 = −ǫA
1G−1 − ǫ

∫

23
i

{
2̂

1̂

2̂

(31)
A

2̄G−1 A
3̄G−1 − 3̂

1̂

3̂

(12)
A

2̄G−1 A
3̄G−1

+
2̂

1̂

2̂

(31)
A

2̄G−1 A3̄ −
2̂

1̂

2̂

(31)
A2̄A3̄G
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− 3̂

1̂

3̂

(12)
A2̄GA3̄ +

3̂

1̂

3̂

(12)
A2̄A3̄G−1

}
+ · · · .

Finally to third order, careful inspection of the expansion will produce the following, where

we have carefully relabelled variables,

· · · + ǫ

∫

234

{
2̂

1̂
Θ2(1234)A

2̄G−1 A
3̄G−1 A

4̄G−1 +
3̂

1̂
Θ3(1234)A

2̄G−1 A
3̄G−1 A

4̄G−1

+
4̂

1̂
Θ4(1234)A

2̄G−1 A
3̄G−1 A

4̄G−1

+
2̂

1̂
Ξ2(125)Γ(5̄34)A

2̄G−1A3̄A4̄ +
5̂

1̂
Ξ2(154)

2̂

5̂
Θ2(5̄23)A

2̄G−1A3̄G−1 A4̄

+
5̂

1̂
Ξ2(154)

3̂

5̂
Θ3(5̄23)A

2̄G−1 A
3̄G−1 A4̄

− 2̂

1̂
Ξ2(125)Γ(5̄34)A2̄A3̄GA4̄G − 5̂

1̂
Ξ2(154)

2̂

5̂
Θ1(5̄23)A2̄A3̄A4̄G

− 5̂

1̂
Ξ2(154)

3̂

5̂
Θ3(5̄23)A2̄A3̄A4̄G

− 5̂

1̂
Ξ3(125)

3̂

5̂
Θ2(5̄34)A2̄GA3̄A4̄ −

5̂

1̂
Ξ3(125)

4̂

5̂
Θ3(5̄34)A2̄GA3̄A4̄

− 3̂

1̂
Ξ3(154)Γ(5̄23)A2̄GA3̄GA4̄

+
5̂

1̂
Ξ3(125)

3̂

5̂
Θ2(5̄34)A2̄A3̄G−1 A

4̄G−1 +
5̂

1̂
Ξ3(125)

4̂

5̂
Θ3(5̄34)A2̄A3̄G−1 A

4̄G−1

+
4̂

1̂
Ξ3(154)Γ(5̄23)A2̄A3̄A4̄G−1

+
2̂

1̂
Ξ2(1234)A

2̄G−1 A3̄A4̄ −
2̂

1̂
Ξ2(1234)A2̄A3̄GA4̄ −

2̂

1̂
Ξ2(1234)A2̄A3̄A4̄G

− 3̂

1̂
Ξ3(1234)A2̄GA3̄A4̄ +

3̂

1̂
Ξ3(1234)A2̄A3̄G−1 A4̄ −

3̂

1̂
Ξ3(1234)A2̄A3̄A4̄G

− 4̂

1̂
Ξ4(1234)A2̄GA3̄A4̄ −

4̂

1̂
Ξ4(1234)A2̄A3̄GA4̄ +

4̂

1̂
Ξ4(1234)A2̄A3̄A4̄G−1

}
+ · · · .

We shall persevere and collect terms and use relations (2.16) and (2.11),

· · · − ǫ

∫

234

{ (
2̂

1̂

)2

Γ(1234)A2̄G−1 A3̄G−1 A4̄G−1 −
(

3̂

1̂

)2

Γ(1234)A2̄G−1 A3̄G−1 A4̄G−1

−
(

4̂

1̂

)2

Γ(1234)A
2̄G−1 A

3̄G−1 A
4̄G−1 −

(
2̂

1̂

)2

Υ(154)Γ(5̄23)A
2̄G−1A3̄G−1 A4̄

−
(

3̂

1̂

)2

Υ(154)Γ(5̄23)A
2̄G−1 A

3̄G−1A4̄ +

(
4̂

1̂

)2

Υ(154)Γ(5̄23)A2̄GA3̄GA4̄
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+

(
2̂

1̂

)2

Υ(125)Γ(5̄34)A2̄A3̄GA4̄G −
(

3̂

1̂

)2

Υ(125)Γ(5̄34)A2̄A3̄G−1 A
4̄G−1

−
(

4̂

1̂

)2

Υ(125)Γ(5̄34)A2̄A3̄G−1 A4̄G−1 +

(
2̂

1̂

)2

Υ(1234)A2̄A3̄GA4̄

−
(

3̂

1̂

)2

Υ(1234)A2̄A3̄G−1 A4̄ +

(
4̂

1̂

)2

Υ(1234)A2̄A3̄GA4̄

−
(

2̂

1̂

)2

{Υ(152)Γ(5̄34) + Υ(1234)}A2̄G−1 A3̄A4̄

+

(
3̂

1̂

)2

{Υ(152)Γ(5̄34) + Υ(1234)}A2̄GA3̄A4̄

+

(
4̂

1̂

)2

{Υ(154)Γ(5̄23) + Υ(1234)}A2̄GA3̄A4̄

+

(
2̂

1̂

)2

{Υ(152)Γ(5̄34) + Υ(1234)}A2̄A3̄A4̄G

+

(
3̂

1̂

)2

{Υ(154)Γ(5̄23) + Υ(1234)}A2̄A3̄A4̄G

−
(

4̂

1̂

)2

{Υ(154)Γ(5̄23) + Υ(1234)}A2̄A3̄A4̄G−1

}
+ · · · .

Fortunately, now, we have already calculated the above expressions enclosed in paranthesis

in Γ and Υ in the previous calculation of δA in appendix A so we do not need to do these

again. We can reach the result

· · · − ǫ

∫

234

{
−
(

2̂

1̂

)2
1̂q̂A

2̄G−1 A
3̄G−1A4̄G−1

(q, 2)(q, 2 + 3)
−
(

3̂

1̂

)2
1̂q̂A

2̄G−1 A
3̄G−1 A

4̄G−1

(q, 2)(q, 2 + 3)
−

−
(

4̂

1̂

)2
1̂q̂A

2̄G−1 A
3̄G−1 A

4̄G−1

(q, 2)(q, 2 + 3)
−
(

2̂

1̂

)2
1̂q̂A

2̄G−1A3̄G−1 A4̄

(q, 2)(q, 4)
−

−
(

3̂

1̂

)2
1̂q̂A2̄G−1 A3̄G−1 A4̄

(q, 2)(q, 4)
+

(
4̂

1̂

)2
1̂q̂A2̄GA3̄GA4̄

(q, 2)(q, 4)
+

+

(
2̂

1̂

)2
1̂q̂A2̄A3̄GA4̄G

(q, 3)(q, 1)
−
(

3̂

1̂

)2
1̂2̂A2̄A3̄G−1A4̄G−1

(q, 3)(q, 1)
−

−
(

4̂

1̂

)2
1̂q̂A2̄A3̄G−1A4̄G−1

(q, 3)(q, 1)
+

(
2̂

1̂

)2
1̂q̂A2̄A3̄GA4̄

(q, 4)(q, 4 + 1)
−

−
(

3̂

1̂

)2
1̂q̂A2̄A3̄G−1 A4̄

(q, 4)(q, 4 + 1)
+

(
4̂

1̂

)2
1̂q̂A2̄A3̄GA4̄

(q, 4)(q, 4 + 1)
−
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−
(

2̂

1̂

)2
1̂q̂A

2̄G−1A3̄A4̄

(q, 3)(q, 3 + 4)
+

(
3̂

1̂

)2
1̂q̂A2̄GA3̄A4̄

(q, 3)(q, 3 + 4)
−

+

(
4̂

1̂

)2
1̂q̂A2̄GA3̄A4̄

(q, 3)(q, 3 + 4)
+

(
2̂

1̂

)2
1̂q̂A2̄A3̄A4̄G

(q, 1)(q, 1 + 2)
+

+

(
3̂

1̂

)2
1̂q̂A2̄A3̄A4̄G

(q, 1)(q, 1 + 2)
−
(

4̂

1̂

)2
1̂q̂A2̄A3̄A4̄G−1

(q, 1)(q, 1 + 2)

}
+ · · · . (B.1)
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